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SUMMARY 
Several issues related to applications of the dynamic subgrid-scale (SGS) model in large-eddy simulation (LES) at 
low Reynolds number are investigated. A modified formulation of the dynamic model is constructed and its 
perfoxmance in low-Reynolds-number LES of channel flow is assessed through a comparison of length scales 
computed respectively by this modified model, the German-Lilly dynamic SGS model and two empirical wall 
damping functions with optimum model coefficients, which have been successfully used in many simulations of 
channel flows. Two values of the ratio of filter widths are set for each of the dynamic models. The results have 
confirmed that the modified dynamic SGS model gives the correct behaviour of the subgrid eddy viscosity in the 
region of a plane wall to an accuracy that exceeds the best-tuned wall damping function, and almost collapses with 
the theoretical behaviour of the length scale near the wall without any tuning and adjustment. In addition, the 
impact of the choice of the ratio of filter widths on the modified dynamic SGS model is found to be much less than 
with the German-Lilly model. 

KEY WORDS turbulence; channel flow; low Reynolds number; large-eddy simulation; subgrid-scale model; dynamic SGS model 

1. INTRODUCTION 

With the great advances in the availability of modem supercomputers, interest in performing large-eddy 
simulations of engineering flows is increasing. In such simulations, SGS modelling will play an even 
more important role and conventional, fixed coefficient SGS models such as the Smagorinsky model are 
unlikely to be satisfactory. 

Recently a new class of SGS model called the dynamic model was developed by German0 et al.’ and 
modified by Lill9 (hereafter referred to as the Germano-Lilly model). Following Getmano’s pioneering 
work,’ many researchers have applied this model to complex flows where the Smagorinsky model does 
not work successfully, e.g. backward-facing step flows: turbulent cavity flows: stratified Ekman 
l a ~ e r s , ~  turbulent recirculating flows6 and rotating turbulent flows.’ Some authors also extended the 
model to simulate compressible turbulence,8” though the model was derived from incompressible 
turbulence, and their results showed that the dynamic model is able to provide good descriptions of 
highly compressible turbulence. A11 the results have illustrated generally better agreement with direct 
numerical simulation @NS) databases and experimental results. 
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The success of the dynamic SGS model is mainly due to its most promising feature that the model 
coefficient is computed by using the information of the smallest resolved scales, in principle at each 
point in space and at each instant in the time integration. This leads to two superior features. Firstly, the 
model coefficient is computed dynamically as a part of the solution and therefore is adjustable by itself 
according to flow conditions from flow to flow. Secondly, the model coefficient is possibly negative at 
some locations in the flow domain or at some time instant during the time integration and thus is capable 
of accounting for energy backscatter from the subgrid scales to the resolved scales. The Germane-Lilly 
model is able to provide a way of circumventing most of the deficiencies related to the Smagorinsky 
model. 

(a) The Smagorinsky model coefficient is input a priori. This single universal constant is incapable 

(b) An ad hoc damping function must be used to obtain modelled SGS stresses with proper 

(c) The length scale to be used with an anisotropic grid is unclear. 
(d) The eddy viscosity does not vanish in the laminar regime. 
(e) The backscatter of energy transfer is ruled out completely. 

However, the success of the dynamic model in low-Reynolds-number LES is marginal. Cabot and 
Moin” and the present study show that low-Reynolds-number LES results for channel flow using the 
Germano-Lilly dynamic model are more sensitive to the choice of the ratio of the test filter width to the 
grid filter width, despite Germano’s finding in his test case that the results are insensitive to the value of 
that ratio. In addition, it was found from the results of low-Reynolds-number LES for channel flow that 
the Germano-Lilly model encounters more numerical instabilities and the resulting model coefficient 
has a higher magnitude in the central region of the channel. 

The main aim of this paper is to construct a modified dynamic model and to evaluate its performance 
by comparing its results with those from the German-Lilly model and with theoretical results. Our 
model provides a straightforward and physically meaningll averaging method to solve the problem of 
numerical instabilities and alleviates the deficiency of high magnitude of the computed model 
coefficient in the central region of the channel. A number of fiuther issues regarding the application 
of the dynamic model to LES are discussed, such as the appropriate form of averaging method to remove 
the numerical instability, the choice of the test filter width and the ability to account for energy 
backscatter. 

of representing correctly various turbulent flows. 

asymptotic near-wall behaviour. 

2. SUBGRID-SCALE MODELLING 

2.1. Germano-Liliy dynamic subgrid-scale model 

German0 et ~ l .  derived the formulation of the dynamic SGS model by making judicious use of a 
nested grid, which is obtained through filtering the velocity field twice, first by a grid filter and then by a 
coarser filter called the test filter. For an incompressible flow, the dynamically computed model 
coefficient C involved in the computation of the eddy viscosity vt = CA’S, which is equivalent to C:, the 
square of the original Smagorinsky constant, is given as’” ’ 
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with s g  = ;(3ii/i3xj + &,/axi) and s’ = 23$,, where Lij = GA-- &iij are called resolved stresses, 
since they are resolvable from the filtered velocities, and A and A are the grid and test filter widths 
respectively. 

Later Lill? modified the dynamic SGS model to overcome two drawbacks. Firstly, the selection of 3, 
for the contracting tensor to obtain a scalar equation (1) for C is arbitrary. Secondly, numerical 
instabilities are encountered, because the denominator of the formulation of C can vanish or become 
very small. By employing a least squares technique, he obtained a natural choice for the contracting 
tensor needed to derive a scalar equation for solving C. Thus the model coefficient C (the Germano- 
Lilly model coefficient) can be unambiguously written as 

A 1  

where 

In addition, the denominator of (2) can vanish only if each of the five independent components of Mv 
vanishes simultaneously. However, the above local unaveraged version (2) still encounters numerical 
instabilities. The formulation for C actually used in LES is 

where the numerator and denominator are now averaged over a plane parallel to the wall. They are 
assumed to be functions of the distance y normal to the wall and the time t only. 

2.2. Modijied dynamic subgrid-scale model 

Several problems arising from the application of the Germano-Lilly dynamic SGS model to low- 
Reynolds-number LES have been recognized recently,’o”’ such as a greater sensitivity to the choice of 
the ratio of the test filter width to the grid filter width and a higher magnitude of C than the commonly 
used value for channel flows. A modification of the Germano-Lilly model must be introduced to obtain 
better performance of the dynamic SGS model in the low-Reynolds-number situation. Before doing so, 
some issues regarding the use of the dynamic model in LES are addressed: 

(a) the appropriate form of averaging to remove the numerical instability 
@) the choice of the test filter width 
(c) the ability to account for energy backscatter. 

First of all, when homogeneous directions exist in the turbulent flow concerned, an average over the 
homogeneous direction or plane is fairly effective in dealing with the numerical instabilities, as 
demonstrated by other and by the present study. In other flows without any homogeneous 
direction, other averaging choices such as time averaging may be more appropriate. More severe 
problems, such as the instability attributed to negative total viscosity (the sum of the molecular and the 
eddy viscosity) sustained over many time steps at some position, may be remedied by artificially setting 
the total viscosity to zero at those locations, though at the price of losing desirable features of the 
dynamic SGS model (4) to be discussed below. The use of this remedy should be reduced to a minimum 
for a better dynamic SGS model. 
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The second issue arises from the fact that if the ratio of the test filter width to the grid filter width is too 
small, the dynamic model uses little information on scales of motion between the test scale anLthe p d  
scale. In that case the model is not considered to be reliable, since the elements of Lij = i i G j  - 6.;. .’ 
involved in the dynamic model are closely associated with these scales of motion. On the other hand, if 
it is too large, important local information is averaged away, since some type of average has to be used to 
compute the flow variables on the test grid from the grid flow field. Thus the requirement for a better 
dynamic model should be that the important local information be kept as much as possible. Some 
researchers have even tried to create a local dynamic m0de1.I~ 

Thirdly, in the authors’ opinion the ability of the SGS dynamic model to account for backscatter may 
be partially reduced by artificially setting the total viscosity to zero wherever this value becomes 
negative, thereby losing one conceptual advantage of the dynamic formulation, namely the ability to add 
randomness to the explicit scales to account for the upgrid energy transfer. A better dynamic model 
should not predict a large negative value of eddy viscosity over a prolonged period, to avoid the need to 
artificially set the total viscosity to zero. 

Taking the above arguments into consideration, a refinement to the Germano-Lilly model is 
introduced to give the model coefficient the form 

The important feature of h s  modified model is that the model coefficient is truly computed on a local 
basis. Then the dynamically calculated model coefficient, which is time-dependent and varies in space, 
is averaged over the homogeneous plane parallel to the wall. By construct, in the Germano-Lilly 
dynamic SGS model (4) the numerator and denominator are averaged over the homogeneous plane 
separately. That means they have been assumed to be functions of y and t only, before the model 
coefficient is computed. Thus the resulting model coefficient from the averaged numerator divided by 
the averaged denominator is longer on a local basis. 

The advantage of the modification is that more local information can be kept than in the Germano- 
Lilly dynamic SGS model. The local information is very important for the quality of the dynamic 
model. In addition, the physical meaning of the averaging procedure used in (5) is sounder and more 
straightforward than that in (4). We suggest that this modified dynamic SGS model may be superior to 
the Germano-Lilly model. Its performance is tested to evaluate the effectiveness of the modification in 
the following section. 

3. APPLICATION TO LOW-REYNOLDS-NUMBER CHANNEL FLOW 

3.1. Numerical simulations 

The evaluation of the modified dynamic model was carried out in a channel flow. The simulated flow 
is driven by a constant pressure gradient between parallel infinite walls. The friction Reynolds number 
Re:, based on the mean friction velocity u, and half-channel width, is 205. In Figure 1 the flow 
geometry and naming conventions are shown. The box dimensions are 4 n 6 x 2 n 6 x 2 6  in the 
streamwise (x), spanwise (z) and cross-stream (y) directions respectively, where 26 is the distance 
between the walls. Since the fully developed turbulent channel flow is homogeneous in the x- and the z- 
direction, periodic boundary conditions are used in both these directions. In the direction normal to 
walls a natural, no-slip boundary condition is applied, since the boundary layer is to be resolved 
explicitly well inside the linear sublayer. 
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I 

U 

G: 
Figure 1. Flow geometry 

A finite volume LES code, originally written by Gavrilakis et al. l4 and modified to suit the present 
study, was used here. The code is capable of simulating three-dimensional time-dependent turbulent 
channel flows having two statistically homogeneous dimensions. The third dimension can involve 
strong shear. In this code the incompressible momentum equations are discretized by central differences, 
the Adams-Bashforth time integration scheme is applied to the non-linear, viscous and pressure terms 
and the pressure at the advanced time is solved from a Poisson equation through Fourier transformation 
with respect to the streamwise and spanwise homogeneous directions. 

Four-simulations were performed. The characteristics of these simulations are summarized in Table I. 
A and A in Table I are the grid and test filter widths respectively. The filtered velocity fields at these two 
levels are obtained via discretization used as an implicit filter, rather than an explicit filter, like the 
Gaussian or the sharp Fourier cut-off filter. Following Deardorff,” in the present study they are defined 
as 

ii = (iixiiyiiz)’/3. 

For comparison, runs A2 and A3 use the Germano-Lilly dynamic SGS model. By contrast, runs B2 and 
B3 use the modified dynamic SGS model. To investigate the sensitivity of the simula$on resul9 to the 
choice of the ratio of the test filter width to the grid filter width, in A2 and B2 we have A, = 2Ax, Ay = 6, 

Table I. Characteristics of simulations and models 

symbol A2 A3 B2 B3 

4n6x26x2n6 
96x 64 x 80 

26vlu, 
0 . 6 3 5 ~ 1 ~ ~  
1 5 . 2 2 ~ 1 ~ ~  
1 5 . 5 ~ / ~ ,  

2 2 2213 
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= 2A2 p d  therefore &A = 22/3, whereas in A3 and B3 we have Ax = 2Ax, A,, = 2A,, & = 2A2 and 
therefore &A = 2. The base model used by both the Germano-Lilly and the modified dynamic model is 
the Smagorinsky model. These four runs were all started from the instantaneous state of a large-eddy 
simulation (96 x 64 x 80) at t =  101.56/uT.” The time step was 0.00036/uT for each simulation. Run A2 
required 11.313 s per time step on a Cray Y-MP8, run B2 1-5079 s, run A3 2.3217 s and run B3 
2.3271 s. It can be seen that A2 is most costly in terms of computer time among the four runs. The 
reason for this will be given later. 

3.2. Results and discussion 

The computed model coefficients C for runs A2, A3, B2 and B3 are presented in Table 11. Note that 
the model coefficient obtained from run A2 at some locations became negative or very large. Figure 2 
illustrates the turbulence length scales C(AxA,&)1’3 computed from the results of runs A2 (open 
triangles), A3 (full triangles), B2 (open circles) and B3 (full circles) in comparison with the length scale 

(7) l M ,  = Cs[l - exp (-JJ+/A+)](A~A~A~)’/~ 

lp,M = Cs[l - exp (-JJ+~/A+~)]’/~(A~A~A~)~’~ 

(broken curve) proposed by Moin and Kim16 (referred to as MK), the length scale 

(8) 

(hll  curve) suggested by Piomelli et al. l7 (referred to as PFM) and the y+3” curve (dotted line), which is 
the correct asymptotic behaviour of the turbulence length scale near the wall. (The negative value in run 
A2 has been removed to plot the logarithmic profile.) Note that in (7) and (8), C, = 0.1 is the optimum 
value for channel flows. 

100 2 3 4 101 2 3 4  132 7 3 4 

Y+ 
Figure 2. Subgrid length scale C versus y+: 1 1 1  circles, B3; open circles, B2; full triangles, A3; open triangles, A2; full curve, 

0.1 [I - ~x~(-~+~/A+~)]’~(A~A,AJ’’~; broken curve, 0.1 [l - e~p(-y+/A+)](A~4A~)”~; dotted line, y+31z c w e  
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Table 11. Dynamically computed model coefficients C 
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Y+ A2 A3 B2 B3 
0.2946 
0.9293 
1.6620 
2.5070 
3.4820 
4.6050 
5.8990 
7.3860 
9.9060 
1 1 -060 
13.310 
15.880 
18-820 
22.170 
25.980 
30.300 
35.180 
40.680 
46.860 
53.760 
61.430 
69.920 
79.250 
89440 
100.50 
112.40 
125.10 
138.50 
152.60 
167.10 
182.10 
197.40 

0.3894E-05 
0.3207E-04 
0.1 15 1E-03 
0.2787E-03 
0.4938E-03 
0.6633E-03 
0.91 6 1E-03 
0.1440E-02 
0.1 8 17E-02 
0.1721E-02 
0.3230E-02 
0.7 17 1E-02 
0,6817E-02 
0.2 1 14E-02 
0.2647E-02 
0.4376E-02 
0.3426E-02 
0.6948E-02 
0.3370E-02 
0.1 545E-03 

-0.309OE-02 
0.1434E-0 1 
0.3699E-01 
0.663 8E-0 1 
0.4586E-01 
0.8 154E-02 
0.1153 
0.1847 
0.977 1 E-0 1 
0.1568 

-04436E-01 
-0.1592 

0.3698E-06 
0.5903E-05 
0.2763E-04 
0.7946E-04 
0.1759E-03 
0.3334E-03 
0.574OE-03 
0.9291E-03 
0.143 8E-02 
0.2169E-02 
0.3 152E-02 
0.4552E-02 
0.6675s-02 
0.9625E-02 
0.1272E-02 
0-1 523E-02 
0.1697E-02 
0.1742E-0 1 
0.1792E-01 
0.1977E-01 
0.1932E-01 
0.1685E-01 
0.1 634E-01 
0.1455E-01 
0.1478E-01 
0.15 14E-01 
0.1272E-0 1 
0.102 1E-01 
0.8 141E-02 
0.7339E-02 
0.593 1E-02 
0.4402E-02 

0.2052E-06 
0.3585E-05 
0.1746E-04 
0.5409E-04 
0.1 38 1E-03 
0.3596E-03 
0.4 1 92E-03 
0.9276E-03 
0.2304E-02 
0.249 1 E-02 
0.2459E-02 
0.5463E-02 
0.83 16E-02 
0.1001E-01 
0.2088E-01 
0.2324E-01 
0.2496E-01 
0.23 1 OE-01 
0,267 1E-01 
0.2552E-01 
0.2380E-01 
0.2679E-01 
0.29 13E-0 1 
0-294OE-01 
0.2986E-01 
0.3260E-01 
0.3 279E-0 1 
0.2 1 79E-0 1 
0.2310E-01 
0.2709E-01 
0.2254E-0 1 
0.2925E-01 

0.8525E-07 
0.1473E-05 
0.7203E-05 
0.2224E-04 
0*5500E-04 
0.1208E-03 
0.2493E-03 
0.4906E-03 
0.9 15 1 E-03 
0.1582E-02 
0.255 1 E-02 
0,37 1 OE-02 
0.5139E-02 
0.7018E-02 
0.889 1 E-02 
0.1066E-01 
0.1 197E-01 
0.1287E-01 
0.1 379E-01 
0.148 1E-01 
0.1573E-01 
0-1633E-01 
0.1 621E-01 
0-1686E-01 
0.1672E-01 
0.1479E-01 
0.1452E-01 
0- 1377E-01 
0- 1269E-0 1 
0-1104E-01 
0-9982E-02 
0.1105E-01 

There are several important findings. Firstly, the length scales from runs A2 and A3 using the 
Germano-Lilly dynamic SGS model (4) are close to the curve of lm, while the length scales from runs 
B2 and B3 using the modified dynamic SGS model (5) are close to the curve of 2pm. This is best tuned 
to ensure a correct behaviour for the length scale of turbulence near the wall among the various existing 
empirical wall damping functions and therefore is believed to be most capable of giving an accurate 
length scale profile in the near-wall region." Of great promise is the profile of length scale obtained 
from run B3, which shows the correct behaviour of the subgrid eddy viscosity in the region of a plane 
wall to an accuracy that exceeds this best-tuned wall damping function (PFM), and almost collapses 
with the curve of Y+~'', the expected behaviour of the length scale near the wail. 

Secondly, run A2 using the Germano-Lilly dynamic SGS model (4) with Y A  = 22/3 encountered 
numerical instability, whereas run A3 using the same SGS model but with NA=2 is stable. This 
indicates that the Germano-Lilly dynamic SGS model (4) shows a greatecsensitivity to the value of &A 
for low-Reynolds-number channel flow. A greater sensitivity to the ratio AtA has also been encountered 
by Cabot and Moin" in their simulations of low-Reynolds-number channel flows using a dynamic SGS 
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model in the form (4). In contrast, as can be seen clearly from the length scale procles obtained from B2 
and B3 using the modified dynamic SGS model (5 ) ,  the changes in the value of A/A did not affect the 
results significantly. 

Thirdly, in run A2 the numerical instability encountered was remedied by artificially setting the total 
viscosity (v + vt) to zero at those locations where negative total viscosity occurred, following Akselvoll 
and M ~ i n . ~  As already presented earlier in this section, run A2 was most costly, approximately 7.5 times 
more expensive than B2 and even 4.9 times more expensive than A3 and B3. (This was certainly due to 
poor vectorization of the part of the DSGM coding che5king the locations where the total viscosity was 
negative and setting it to zero.) Runs A3 and B3, with A/A = 2, involve more neighbouring grid points 
and therefore more computation than A2 and B2 when the velocity field is filtered by the test filter 
whose width is larger in A3 and B3 than in A2 and B2. 

Finally, the low-Reynolds-number LES results for channel flow performed in this study (Table 11) 
show that the largest magnitude of the eddy viscosity computed dynamically for run A3 using the 
GermanWLilly model is 4 1 % higher than 0- 1, the value commonly used for channel flows. However, in 
run B3 using the modified dynamic model, the largest magnitude of the eddy viscosity is larger than 0.1 
by 27% and the region where the larger eddy viscosities occur is smaller. This indicates that the 
modification has brought about an alleviation of the deviation of the computed value from the 
commonly used one, although the magnitude remains high, since we continued to use the 
Smagorinsky model as the base model in deriving the modified dynamic SGS model. 

4. CONCLUSIONS 

The simulations performed in this study indicate that the advantages of the modified dynamic SGS 
model (5),  which keeps more of the local information believed to be important for the reliability and 
accuracy of the dynamic SGS model, can bring about an improvement in dynamic SGS modelling. The 
success of the modified dynamic SGS model in low-Reynolds-number LES for channel flow is 
threefold. Firstly, the resulting length scale from LES using the modified model has shown an almost 
perfect behaviour in the region of a plane wall without any need to adjust the model coefficient or to 
invoke ad hoc wall damping functions. In contrast, the performance o,f the Germano-Lilly dynamic 
SGS model is marginal. Secondly, for the modified model the choice of MA did pot s e c t  the predicted 
length scale significantly, whereas for the Germano-Lilly model the choice of A/A has a considerable 
impact on the predicted length scale. Finally, the modified model illustrates an improved numerical 
stability compared with the Germano-Lilly model. 

The results of LES using the modified dynamic SGS model show great promise. However, there still 
exists a problem related to its application to low-Reynolds-number flow. Despite being much lower than 
that resulting from the Germano-Lilly dynamic SGS model, the magnitude of the eddy viscosity 
computed dynamically by the modified dynamic model remains high. This deficiency may arise from 
the assumption used by German0 to derive the dynamic model, namely that the same formulation (the 
standard Smagorinsky model) can be used to parametrize SGS stresses at both grid and test levels and 
therefore the grid and test scale cuts are limited to an inertial range. Unfortunately, Germano's 
assumption is inappropriate for low-Reynolds-number LES. In low-Reynolds-number LES or in LES 
with high enough resolution the grid and test scale cut-offs fall in the dissipation range, in which the 
energy spectrum is much steeper than that of the inertial subrange. Under this circumstance the 
Smagorinsky formulation overestimates the energy transfer across the cut, which in turn results in 
overprediction of the magnitude of the eddy viscosity. 

To overcome this deficiency, the base model used to derive the formulation of the dynamic SGS 
model could be one extended to the low-Reynolds-number situation. Such a model, called a dissipation 
range SGS model, has been proposed" and has been tested in low-Reynolds-number LES for channel 
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flow, showing better agreement with DNS and experimental results. ’ ’ A new dynamic SGS formulation 
based on this dissipation range SGS model has been suggested.” More tests need to be done on such a 
dynamic SGS model. 
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